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Axisymmetric flow in a rotating annulus with differential heating is computed for a 
high-kinematic-viscosity fluid, such as silicone oil, by numerical integration of the 
Navier-Stokes equations. Linear stability analysis of the steady axisymmetric flow 
with respect to a wave perturbation gives a transition curve from the axisymmetric 
regime to the wave regime; the transition curve is similar to that obtained 
experimentally by Fein & Pfeffer (1976). However, if we neglect the centrifugal force 
term, the transition curve is not similar, but it resembles the curve for water (a 
familiar ‘anvil shape ’ in the regime diagram). A dimensionless parameter 
v2(a+b)/8g(b-u)* (where a and b are the radii of the inner and outer cylinders, d the 
depth of the fluid, v the kinematic viscosity, g the acceleration due to gravity), which 
equals the ratio of the centrifugal force to the gravity force divided by the Taylor 
number, is more fundamental than the Prandtl number in determining the shape of 
the transition curve. 

1. Introduction 
Rotating annulus experiments with horizontal differential heating have been done 

to investigate the fundamental dynamics of sloping convection (see e.g. Hide & 
Mason 1975). Several flow regimes appear, which depend mainly on the following 
dimensionless parameters : Taylor number (Ta  = 4Q2(b-u)b/v2d) ,  thermal Rossby 
number (Ro, = gdaAT/Q2(b-u)2) ,  Prandtl number (Pr = V / K )  and the aspect ratio 
(T= ( b - u ) / d ) ,  where u and b are the radii of the inner and outer cylinders, d the 
depth of the fluid, g the acceleration due to gravity, D the rotation rate of the 
annulus, AT the imposed radial temperature difference, a the coefficient of volume 
expansion of the fluid, K the thermometric diffusivity, v the kinematic viscosity. In 
a regime diagram plotted in the (log,, Tu, log,,Ro,)-plane, axisymmetric flow is 
found outside the anvil-shaped region (broken line in figure 1) for the case of water 
( P r =  7.16). Barcilon (1964) obtained the anvil shape for the transition curve 
separating the axisymmetric regime and the wave regime by adding top and bottom 
Ekman layers to Eady’s baroclinic instability theory. Introduction of the Ekman- 
layer friction is necessary to obtain the lower axisymmetric regime at small Tu and 
small Ro,. 

Fein & Pfeffer (1976) did an experiment using two different fluids - mercury 
(Pr = 0.0246) and silicone oil (Pr = 63) - and obtained regime diagrams for each fluid. 
The shape of the transition curve for silicone oil is not an anvil shape, as shown by 
the heavy solid line in figure 1. It is believed that the Prandtl number is the key 
parameter to explain the difference between the transition curves. However, an 
anvil-shaped transition curve is obtained even for the parameters of silicone oil if we 
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use Barcilon's model. Fein & Pfeffer suggested the possibility that the slope of the 
geopotentials due to  the centrifugal force, the effects of which are neglected in 
Barcilon's model, plays a vital role. In the case of silicone oil, the centrifugal force 
must be about 30 times as large as that for water to get the same Taylor number, 
because the value of the kinematic viscosity of silicone oil is 5.4 times larger. I n  order 
to  support their suggestion, they referred to  some theoretical studies which take the 
effects of the slope of the geopotentials into account by sloping the top and bottom 
boundaries (Hide & Mason 1975). However, simplification and modification of the 
experimental situations leave some ambiguity. 

In  this study, we evaluate numerically the effects of the centrifugal force on 
the transition for silicone oil. We compute steady axisymmetric flow in a two- 
dimensional parameter space of (Ta, Ro,) by time integration of two-dimensional 
nonlinear NavierStokes equations. Linear stability of the axisymmetric flow with 
respect to wave perturbations is examined as an initial-value problem of the 
linearized perturbation equations. A transition curve separating the axisymmetric 
regime and the steady-wave regime is obtained from these linear stability analyses. 
We then repeat the computation of the axisymmetric flow and the stability analysis 
without the centrifugal force term. Comparison of the results clarifies qualitative and 
quantitative differences due to the centrifugal force in an axisymmetric flow, the 
transition curve and the structure of unstable wave disturbances. 
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2. The model 
The governing equations are 

V 

r [ rz 
VVA uv 

v,+uv,+-+wv,+-++Qu r r = --+v vv--+y], 
(3)  

(4 )  
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Wt+UW,+-fWWz = -pz+vv%u-Pg, 

V e A  et+ue,+-+we, r = Kv28, 

r Po 

( 5 )  u VA 
r r  

v * u  = u,+-+-+w, = 0, 

where 

( r ,  A ,  z )  are cylindrical coordinates, and t time. The corresponding velocity 
components are (u, v, w). Dimensionless temperature 0 is defined as 0 = ( T -  
T linnerwall)/AT, where T is the temperature and AT the imposed temperature 
difference between the inner and outer cylinders. Density is denoted by p, and p is 
pressure divided by the mean density po. We modify the traditional Boussinesq 
approximation by retaining the density variation in the centrifugal force term in the 
radial momentum equation (1).  Parameter e is an index of the treatment of the 
centrifugal force term: E = 1 when we include the term in the computation, or e = 
0 when we neglect it. Physical parameters of the fluid, v, K and a are assumed to be 
constant : v = 5.5 x K-' for 
silicone oil. 

The size of the annulus and boundary conditions are the same as those in Fein & 
Pfeffer (1976). The dimensions are a = 3.48 cm, b = 6.02 cm and d = 5.00 cm. All 
four bounding surfaces are rigid and the surface of the fluid is in direct contact with 
the lid. The top and bottom boundaries are thermally insulating. The inner and outer 
walls are held a t  different constant temperatures, T, and Tb (T, < q), to maintain the 
difference AT. 

The numerical method developed by Williams (1967a) is used to obtain the 
axisymmetric flow. A stream function $(u = - ( l / r )  pz, w = ( l /r )  @,) and vorticity 
[ (  = - { ( l / r )  $,,+ [( l /r)  $-,I,}) are introduced to describe the flow in the vertical ( T ,  2)- 

plane. If we adopt the same notation for the finite difference as in Williams (1967 a ) ,  
the vorticity equation for the meridional circulation in finite-difference form is 

cm2 s-l, K = 8.8 x lop4 om2 s-l and a = 1.05 x 
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The last term is an additional term due to the centrifugal force ; vertical stratification 
generates the vorticity. The computed flow is regarded as steady state when 
variables converge to satisfy the following condition : 

allgrids 

In the linear stability analysis, a small wave perturbation is added to the steady 
axisymmetric flow : 

u( r ,  h, z, t )  = U(r,  z )  +u'(r, z,  t )  eimA, (9) 

with corresponding notation for v, w, p and 8. Substituting these into (1)-(5) and 
neglecting terms quadratic in the perturbation, we obtain linearized perturbation 
equations. Following Williams (1969), we integrate the perturbation equations 
for each wavenumber m with his staggered grid system. If perturbations of any 
wavenumber decay with time, the basic axisymmetric flow is stable. On the other 
hand, it is unstable if at  least one of the perturbations grows. 

The grid resolution is determined after a convergence test of the solutions. A 
resolution of 32(r-direction) x 64(z-direction) is adopted for AT < 5 K and 64 x 128 
for AT > 5 K. These grids give equal grid intervals (Ar = Az)  because the aspect ratio 
of the annulus is 1 : 2. 

We use the temperature difference AT and the rotation rate 52 as controllable 
experimental parameters, and plot the results on the (Ta, Ro,)-plane (a familiar 
regime diagram like those in figure 1). The dimensional parameters AT and SZ are 
transformed into the dimensionless parameters Ta and Ro, with the constants a, b,  
d ,  g, a and v. 

3. Results 
First, we show the result for the case with the centrifugal force term ( E  = 1). 

Figure 2 shows an example of the steady axisymmetric flow of silicone oil obtained 
at  the point marked A in figure 1, where AT = 30 K and 52 = 5.5 rad s-' (Ta = 
8.46 x lo5, Ro, = 0.791). The stream function (figure 2a) shows strong meridional 
circulation in the boundary layers, which flows counterclockwise and transports heat 
inward. In the side boundary layers, the temperature field (figure 2b) has a large 
radial gradient and indicates 'the overshoot ' of the temperature past its interior 
value as pointed out by Mclntyre (1968). The zonal flow (figure 2c) also has a large 
vertical shear in the top and bottom boundary layers. In the interior, the meridional 
circulation is very weak, and the temperature and zonal flow are almost at the 
thermal wind balance : the buoyancy torque due to the radial temperature gradient 
is balanced by the Coriolis torque due to the vertical shear of the zonal flow. 

Most of these characteristics of the axisymmetric flow are similar to the results for 
water. Figure 3 is the steady axisymmetric flow for water at the same Ta and Ro, 
as in figure 2 (AT = 5.16 K and rR = 1.01 rad s-l for the same annulus). Here the 
physical parameters of water are : v = 1.01 x cm2 s-' and 
a = 2.06 x K-l. The meridional circulation and the zonal flow are qualitatively 
similar to those for silicone oil (figure 2). Quantitatively, the intensity of the 
meridional circulation for silicone oil is about twice that for water. The maximum 
value of the zonal flow is also about twice as large. Moreover, the thickness of the side 

cm2 s-l, K = 1.41 x 
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FIGURE 2. Steady axisymmetric flow for silicone oil at AT = 30 K and D = 5.5 rad 8-l (Ta = 
8.46 x lo5, Ro, = 0.791) : (a)  stream function of meridional circulation (em9 s-l), ( b )  normalized 
temperature and (c) zonal velocity (cm &). The centrifugal force term is retained in the 
computations. 

(a) 
d 

z = o  
r = a  b r = a  b r = a  i 

FIGURE 3. As in figure 2 but for water at the same Ta (= 8.46 x lo6) and Ro, (= 0.791), or 
AT = 5.16 K and Sa = 1.01 rad s-l. 

boundary layers for water is 1.5-2 times larger than that for silicone oil, although the 
thickness of the top and bottom boundary layers is almost the same. These are 
consistent with McIntyre's (1968) estimation of the thickness of the boundary layers : 
the thickness of the side boundary layers is proportional to ( V K / ~  AT)+, and the ratio 
is 1 : 1.72 for the present comparison between silicone oil and water. For the top and 
bottom boundary layers, on the other hand, the thickness of the Ekman layer is 
proportional to (v /Q)i ,  and has the same value for silicone oil and water at the same 
Taylor number. In the temperature field, the slope of the isotherms in the interior for 
water is larger than that for silicone oil. Moreover, there is no 'overshoot' of 
the temperature for water because of the weaker meridional circulation. These 
characteristics of the temperature field reflect the relative importance of convective 

16 FLM 229 
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and conductive transport of heat (Williams 1967 b) .  However, the question of how 
the temperature distribution is determined for a given external condition remains. 

Steady axisymmetric flows are computed for several values of 8 a t  AT = 30 K, 
5 K, 1 K and 0.2 K. The lines of constant AT are the diagonal ones sloping from 
upper left to  lower right in figure 1. A linear stability analysis is done for each steady 
flow. Time integration of the perturbation equations gives an averaged growth rate 
u (s-l) during the time interval [ t l ,  t2]  : 

where E(t )  is the kinetic energy of the wave perturbation. I n  this study, CT is 
calculated after aE(t)/at has attained an almost constant value (or oscillates around 
a constant value) for more than 30 s. 

The growth rate for each wavenumber as a function of the rotation rate 8 is shown 
in figure 4 for (a)  AT = 30 K, ( b )  5 K, (c) 1 K and ( d )  0.2 K.  In each figure, the growth 
rate u increases with 8 and aa/a8 increases with the wavenumber m. With a linear 
interpolation, we can determine a transition point Q, at which one of u values 
becomes positive with increasing 8. For example, in figure 4(a), the axisymmetric 
flow becomes unstable for the perturbation with m = 6 a t  8, = 4.85 rad s-l. The 
absolute value of CT and au/a8 become large for large AT (note that the scale of the 
ordinate is different among figures 4 ( a ) 4  (d ). 

We obtain a transition curve joining the transition points in the regime diagram 
shown in figure 5 .  The transition curve is very close to  the curve obtained 
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FIGURE 6. Vertical section of the most unstable wave perturbation (m = 6) at (r-a)/(b-a) = 0.5 
for AT = 30 K and S = 5.5 rad s-l: (a) pressure, (a) temperature, (c) zonal velocity, ( d )  radial 
velocity and (e) vertical velocity. 

experimentally for silicone oil (figure 1) except for the region where AT < 0.2 K .  The 
perturbation that destabilizes the axisymmetric flow at the transition point has the 
same wavenumber as observed in the laboratory experiment near the transition 
curve (figure 1). 

The structure of an unstable perturbation is shown in figure 6, which is a vertical- 
zonal section at the mean radius of the annulus for m = 6 a t  AT = 30 K and 52 = 

16-2 
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FIGURE 7. As in figure 2 except that the centrifugal force term is neglected in computations. 

U 
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FIGURE 8. Difference of the two steady axisymmetric flows at A T  = 30 K and a = 5.5 rad s-l 
subtracting the value in figure 7 from that in figure 2. (a) Stream function, (b) normalized 
temperature and (c )  zonal velocity. Units are the same as in figure 2. 

5.5 rad s-l. Mutual phase relations of the variables are similar to those obtained for 
water (Tokioka 1970). The structure is basically that of Eady’s wave. However, there 
is disorder of the structure near the top and bottom boundaries, particularly in the 
temperature field (figure 6b)  and the zonal velocity field (figure 6c) .  The disorder near 
the boundaries is small for small AT. 

In order to investigate the dynamical role of the centrifugal force, we did a 
calculation neglecting the centrifugal force term (E = 0). Figure 7 shows the steady 
axisymmetric flow under the same external conditions as in figure 2 (AT = 30 K, 
G? = 5.5 rad s-l). The two axisymmetric flows for B = 0 and E = 1 are similar to each 
other: the difference, shown in figure 8, is less than 10%. In the case of e = 1, the 
radial gradient of temperature is weaker and the vertical shear of the zonal velocity 
is larger. These differences in the temperature and the zonal velocity can be 
understood by a torque balance in the interior region. When E = 0, the buoyancy 



The stability of viscous Jlow in a rotating annulus 479 

; . '  ' 
\ I  t 

I I . I  , 
6 I t  

i I \ \  i I 
10' 10' 

Ta 
FIGURE 9. As in figure 5 except that the centrifugal force term is neglected in the analysis. The 
broken line is the transition curve for the case with the centrifugal term (taken from figure 5). 

torque (anticlockwise in the (r ,  %)-plane) is balanced with the Coriolis torque 
(clockwise). When E = 1, the vertical difference of the centrifugal force due to the 
density stratification makes an anticlockwise torque. To compensate for the 
centrifugal torque, it is necessary that the thermally driven torque becomes small 
and/or the Coriolis torque becomes large. 

A linear stability analysis of the axisymmetric flows under E = 0 gives a transition 
curve for the case without the centrifugal force (solid line in figure 9). The transition 
curve has an anvil shape similar to that for water, but its position shifts to large 
Taylor number compared with that for water (broken line in figure 1). The curve 
intersects the transition curve for 8 = 1 (broken line in figure 9) twice. There are three 
regions where the stability of the axisymmetric flow is different for the cases of E = 
0 and E = 1 (shaded regions (I), (11) and (111) in figure 9). In regions (I) and (111), the 
basic flow is unstable for E = 1 and stable for E = 0. On the other hand, in region (11), 
it is stable for E = 1 and unstable for E = 0. The structure of unstable wave 
perturbations is not very different for E = 1 and E = 0. 

We further investigate the role of the centrifugal force terms in the equations for 
axisymmetric flows and wave perturbations. Two additional linear stability analyses 
are done in the three regions in figure 9: one is a stability analysis of the basic 
axisymmetric flow with E = 1 to a wave perturbation with E = 0 ; and the other is an 
analysis of the basic flow with E = 0 to a perturbation with E = 1. Table 1 show the 
result for all these combinations of E in the analyses a t  the four points (a)-(d) in figure 
9. A t  the two points ( a )  and (a) in regions (I) and (11), the stability depends on the 
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( a )  AT = 30 K, 52 = 5.5 rad s-l 
Tu = 8.46 x lo5, Ro, = 0.791 

( b )  AT = 5 K ,  52 = 3.5 rad s-l 
Ta = 3.43 x lo5, Ro, = 0.326 

Linear stability Linear stability 

Basic flow € =  1 E = O  Basic flow E =  1 & = O  

E = l  unstable unstable € =  1 stable stable 
E = O  stable stable E = O  unstable unstable 

( c )  AT = 1 K, Q = 4.0 rad s-l 
Ta = 4.47 x lo5, Ro, = 4.98 x lo-' 

(d ) AT = 0.2 K, 52 = 4.0 rad s-l 
Ta = 4.47 x lo5, Ro, = 9.97 x 

Linear stability Linear stability 

Basic flow & = 1  € = O  Basic flow E = l  & = O  

€ = l  unstable stable E =  1 unstable stable 
€ = O  unstable stable E = O  unstable stable 

TABLE 1. Results of the stability analysis for combinations of E between the computation of 
the axisymmetric flow and the linear stability analysis 

basic axisymmetric flow. The centrifugal force term in the perturbation equations 
does not change the stability. As shown in figures 2 and 7, the two basic flows for (a) 
are very similar to each other but the small difference results in different stability ; 
the basic flow in figure 2 is unstable while that in figure 7 is stable. On the other hand, 
at (c) and ( d )  in region (111), the stability depends on the perturbation equations. The 
centrifugal force term in the basic axisymmetric flow does not change the stability. 
For large AT the centrifugal force term in the basic axisymmetric flow is important 
in obtaining a transition curve similar to the experiment, while that term in the 
perturbation equations is important for small AT. 

4. Discussion 
The centrifugal force term has been neglected in previous numerical studies for 

water (e.g. Williams 1967a, b ; Tokioka 1970). Since the centrifugal acceleration is 
much smaller than the gravitational acceleration, it is justified to neglect the 
centrifugal force term in numerical studies for water. However, in this study, we 
clarified that the term is necessary for a stability analysis of fluid with large 
kinematic viscosity. Although it is believed that the Prandtl number is the key 
parameter, it is not the most appropriate parameter to describe the difference in the 
shape of the transition curves for water and silicone oil. A transition curve with an 
anvil shape could be obtained even for fluids with high Prandtl number, if the 
kinematic viscosity is similar to that of water but the thermometric diffusivity is 
very small. 

Instead of the Prandtl number, a relevant dimensionless parameter is l7, = 
0 2 ( b 2 - a 2 ) / 2 g d  (see table 2 in Fowlis & Hide 1965). The parameter 17, is the ratio of 
the centrifugal force term to the pressure gradient term when we do a scale analysis 
by assuming geostrophy. In other words, l7, is the ratio of the centrifugal 
acceleration to the gravitational acceleration (multiplied by the aspect ratio). If we 
illustrate the regime diagrams for different fluids in the three-dimensional parameter 
space (Tu, RoT, and a third parameter), as figure 21 in Fein 6 Pfeffer (1976), it is more 
appropriate to introduce a dimensionless parameter v2(a + b) /8g (b  - a)4 ( = n3/Tu) as 
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the third parameter, because this parameter depends only on the fluid and the 
apparatus (on the other hand, 17, depends on a). Note that, even for water, large 
mean radius of the annulus would produce the same effect as for a highly viscous 
fluid. 

5. Conclusion 
We have done a numerical experiment for sloping convection in a rotating 

annulus with a highly viscous fluid, such as silicone oil. The centrifugal force terms 
were retained in the computation because these are not negligibly small for silicone 
oil. The axisymmetric flows obtained are qualitatively similar to those for water. 
However, the intensity of the meridional circulation and the zonal flow is larger than 
that for water at the same Tu and RoT, while the slope of isotherms in the interior 
is smaller. A linear stability analysis of the axisymmetric flows with a wave 
perturbation gives a transition curve similar to that obtained in the laboratory 
experiment. Moreover, the unstable wavenumber on the transition curve in the linear 
stability analysis corresponds to that obtained in the laboratory experiment. 

Experiments without the centrifugal force term were done to investigate the 
dynamical role of the term. Axisymmetric flow without the centrifugal force term is 
not very different from that with the term. However, the transition curve obtained 
has an anvil shape similar to that for water with low viscosity. The difference in the 
shape of the transition curve is caused only by a change of the treatment of the 
centrifugal force term, namely the inclination of the geopotentials due to the 
centrifugal force strongly affects stability property of the axisymmetric flows. The 
centrifugal force term must be retained in studying the dynamics of high-kinematic- 
viscosity fluid. 

We further investigated the role of the centrifugal force term in the axisymmetric 
flow and in the wave perturbation separately. For large AT, the centrifugal force 
term in the axisymmetric flow is important in obtaining a transition curve similar to 
the laboratory experiment. On the other hand, the term in the perturbation 
equations are important for small AT. 

Fein & Pfeffer (1976) pointed out that the regime diagram depends on the working 
fluid. Our numerical experiments show the importance of the centrifugal force in 
determining the transition curve for highly viscous fluids. If we illustrate the regime 
diagrams for different fluids in the three-dimensional parameter space of the Taylor 
number, the thermal Rossby number and the third parameter, it  is more appropriate 
to use a dimensionless parameter v2(u + b)/8g(b ( = Z7JTaylor number) as the 
third parameter instead of the Prandtl number. 
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Scientific Research from the Ministry of Education. 
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